Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate prediction of the global carbon cycle. These two processes systematically acclimate to long‐term environmental changes by adjusting photosynthetic and respiratory traits (e.g., the maximum photosynthetic capacity at 25°C (Vcmax,25) and the leaf respiration rate at 25°C (R25)) following increasingly well‐understood principles. While some land surface models (LSMs) now account for thermal acclimation, they do so by assigning empirical parameterizations for individual plant functional types (PFTs). Here, we have implemented an Eco‐Evolutionary Optimality (EEO)‐based scheme to represent the universal acclimation of photosynthesis and leaf respiration to multiple environmental effects, and that therefore requires no PFT‐specific parameterizations, in a standard version of the widely used LSM, Noah MP. We evaluated model performance with plant trait data from a 5‐year experiment and extensive global field measurements, and carbon flux measurements from FLUXNET2015. We show that observedR25andVcmax,25vary substantially both temporally and spatially within the same PFT (C.V.>20%). Our EEO‐based scheme captures 62% of the temporal and 70% of the spatial variations inVcmax,25(73% and 54% of the variations inR25). The standard scheme underestimates gross primary production by 10% versus 2% for the EEO‐based scheme and generates a larger spread inr(correlation coefficient) across flux sites (0.79 ± 0.16 vs. 0.84 ± 0.1, mean ± S.D.). The standard scheme greatly overestimates canopy respiration (bias: ∼200% vs. 8% for the EEO scheme), resulting in less CO2uptake by terrestrial ecosystems. Our approach thus simulates climate‐carbon coupling more realistically, with fewer parameters.more » « less
-
Abstract Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between subcortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.more » « less
An official website of the United States government
